Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.049
Filtrar
1.
J Pineal Res ; 76(3): e12950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558122

RESUMO

Homeobox genes encode transcription factors that are widely known to control developmental processes. This is also the case in the pineal gland, a neuroendocrine brain structure devoted to nighttime synthesis of the hormone melatonin. Thus, in accordance with high prenatal gene expression, knockout studies have identified a specific set of homeobox genes that are essential for development of the pineal gland. However, as a special feature of the pineal gland, homeobox gene expression persists into adulthood, and gene product abundance exhibits 24 h circadian rhythms. Recent lines of evidence show that some homeobox genes even control expression of enzymes catalyzing melatonin synthesis. We here review current knowledge of homeobox genes in the rodent pineal gland and suggest a model for dual functions of homeobox gene-encoded transcription factors in developmental and circadian mature neuroendocrine function.


Assuntos
Melatonina , Glândula Pineal , Animais , Glândula Pineal/metabolismo , Genes Homeobox , Melatonina/metabolismo , Roedores/genética , Roedores/metabolismo , Fatores de Transcrição/metabolismo , Ritmo Circadiano
2.
BMC Genomics ; 25(1): 380, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632506

RESUMO

BACKGROUND: Trombiculid mites are globally distributed, highly diverse arachnids that largely lack molecular resources such as whole mitogenomes for the elucidation of taxonomic relationships. Trombiculid larvae (chiggers) parasitise vertebrates and can transmit bacteria (Orientia spp.) responsible for scrub typhus, a zoonotic febrile illness. Orientia tsutsugamushi causes most cases of scrub typhus and is endemic to the Asia-Pacific Region, where it is transmitted by Leptotrombidium spp. chiggers. However, in Dubai, Candidatus Orientia chuto was isolated from a case of scrub typhus and is also known to circulate among rodents in Saudi Arabia and Kenya, although its vectors remain poorly defined. In addition to Orientia, chiggers are often infected with other potential pathogens or arthropod-specific endosymbionts, but their significance for trombiculid biology and public health is unclear. RESULTS: Ten chigger species were collected from rodents in southwestern Saudi Arabia. Chiggers were pooled according to species and screened for Orientia DNA by PCR. Two species (Microtrombicula muhaylensis and Pentidionis agamae) produced positive results for the htrA gene, although Ca. Orientia chuto DNA was confirmed by Sanger sequencing only in P. agamae. Metagenomic sequencing of three pools of P. agamae provided evidence for two other bacterial associates: a spirochaete and a Wolbachia symbiont. Phylogenetic analysis of 16S rRNA and multi-locus sequence typing genes placed the spirochaete in a clade of micromammal-associated Borrelia spp. that are widely-distributed globally with no known vector. For the Wolbachia symbiont, a genome assembly was obtained that allowed phylogenetic localisation in a novel, divergent clade. Cytochrome c oxidase I (COI) barcodes for Saudi Arabian chiggers enabled comparisons with global chigger diversity, revealing several cases of discordance with classical taxonomy. Complete mitogenome assemblies were obtained for the three P. agamae pools and almost 50 SNPs were identified, despite a common geographic origin. CONCLUSIONS: P. agamae was identified as a potential vector of Ca. Orientia chuto on the Arabian Peninsula. The detection of an unusual Borrelia sp. and a divergent Wolbachia symbiont in P. agamae indicated links with chigger microbiomes in other parts of the world, while COI barcoding and mitogenomic analyses greatly extended our understanding of inter- and intraspecific relationships in trombiculid mites.


Assuntos
Borrelia , Microbiota , Orientia tsutsugamushi , Tifo por Ácaros , Trombiculidae , Wolbachia , Animais , Tifo por Ácaros/epidemiologia , Tifo por Ácaros/microbiologia , Trombiculidae/genética , Trombiculidae/microbiologia , Wolbachia/genética , Filogenia , Borrelia/genética , Tipagem de Sequências Multilocus , RNA Ribossômico 16S/genética , Arábia Saudita , Orientia tsutsugamushi/genética , Roedores/genética , DNA , Orientia
3.
PLoS One ; 19(4): e0301841, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626103

RESUMO

The number of people suffering from scrub typhus, which is not of concern, is increasing year by year, especially in Yunnan Province, China. From June 1, 2021 to August 15, 2022, a total of 505 mammalian samples were collected from farm, forest, and residential habitats with high incidence of scrub typhus in Yunnan, China, for nPCR (nested PCR) and qPCR (quantitative real-time PCR) detection of Orientia tsutsugamushi. A total of 4 orders of murine-like animals, Rodentia (87.52%, n = 442), Insectivora (10.29%, n = 52), Lagomorpha (1.79%, n = 9) and Scandentia (0.40%, n = 2) were trapped. Comparing the qPCR infection rates in the three habitats, it was no significant difference that the infection rate of residential habitat (44.44%) and that of the farm habitat (45.05%, P>0.05), which is much larger than that of the forest habitat (3.08%) (P<0.001). Three genotypes (Karp-like, Kato-like and TA763-like) of O. tsutsugamushi were found from Yunnan, China in this study.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Humanos , Animais , Camundongos , Tifo por Ácaros/diagnóstico , Fazendas , China/epidemiologia , Orientia tsutsugamushi/genética , Roedores/genética , Reação em Cadeia da Polimerase em Tempo Real , Estudos Epidemiológicos , Florestas , Eulipotyphla/genética
4.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38478715

RESUMO

Sucking lice of the parvorder Anoplura are permanent ectoparasites with specific lifestyle and highly derived features. Currently, genomic data are only available for a single species, the human louse Pediculus humanus. Here, we present genomes of two distinct lineages, with different host spectra, of a rodent louse Polyplax serrata. Genomes of these ecologically different lineages are closely similar in gene content and display a conserved order of genes, with the exception of a single translocation. Compared with P. humanus, the P. serrata genomes are noticeably larger (139 vs. 111 Mbp) and encode a higher number of genes. Similar to P. humanus, they are reduced in sensory-related categories such as vision and olfaction. Utilizing genome-wide data, we perform phylogenetic reconstruction and evolutionary dating of the P. serrata lineages. Obtained estimates reveal their relatively deep divergence (∼6.5 Mya), comparable with the split between the human and chimpanzee lice P. humanus and Pediculus schaeffi. This supports the view that the P. serrata lineages are likely to represent two cryptic species with different host spectra. Historical demographies show glaciation-related population size (Ne) reduction, but recent restoration of Ne was seen only in the less host-specific lineage. Together with the louse genomes, we analyze genomes of their bacterial symbiont Legionella polyplacis and evaluate their potential complementarity in synthesis of amino acids and B vitamins. We show that both systems, Polyplax/Legionella and Pediculus/Riesia, display almost identical patterns, with symbionts involved in synthesis of B vitamins but not amino acids.


Assuntos
Anoplura , Legionella , Pediculus , Complexo Vitamínico B , Animais , Humanos , Filogenia , Roedores/genética , Anoplura/genética , Pediculus/genética , Especificidade de Hospedeiro/genética
5.
Commun Biol ; 7(1): 169, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341501

RESUMO

Anthropogenic disturbance may increase the emergence of zoonoses. Especially generalists that cope with disturbance and live in close contact with humans and livestock may become reservoirs of zoonotic pathogens. Yet, whether anthropogenic disturbance modifies host-pathogen co-evolutionary relationships in generalists is unknown. We assessed pathogen diversity, neutral genome-wide diversity (SNPs) and adaptive MHC class II diversity in a rodent generalist inhabiting three lowland rainforest landscapes with varying anthropogenic disturbance, and determined which MHC alleles co-occurred more frequently with 13 gastrointestinal nematodes, blood trypanosomes, and four viruses. Pathogen-specific selection pressures varied between landscapes. Genome-wide diversity declined with the degree of disturbance, while MHC diversity was only reduced in the most disturbed landscape. Furthermore, pristine forest landscapes had more functional important MHC-pathogen associations when compared to disturbed forests. We show co-evolutionary links between host and pathogens impoverished in human-disturbed landscapes. This underscores that parasite-mediated selection might change even in generalist species following human disturbance which in turn may facilitate host switching and the emergence of zoonoses.


Assuntos
Nematoides , Roedores , Animais , Ratos , Roedores/genética , Imunogenética , Florestas , Zoonoses
6.
Mol Ecol ; 33(5): e17271, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279205

RESUMO

Due to their limited dispersal ability, fossorial species with predominantly belowground activity usually show increased levels of population subdivision across relatively small spatial scales. This may be exacerbated in harsh mountain ecosystems, where landscape geomorphology limits species' dispersal ability and leads to small effective population sizes, making species relatively vulnerable to environmental change. To better understand the environmental drivers of species' population subdivision in remote mountain ecosystems, particularly in understudied high-elevation systems in Africa, we studied the giant root-rat (Tachyoryctes macrocephalus), a fossorial rodent confined to the afro-alpine ecosystem of the Bale Mountains in Ethiopia. Using mitochondrial and low-coverage nuclear genomes, we investigated 77 giant root-rat individuals sampled from nine localities across its entire ~1000 km2 range. Our data revealed a distinct division into a northern and southern group, with no signs of gene flow, and higher nuclear genetic diversity in the south. Landscape genetic analyses of the mitochondrial and nuclear genomes indicated that population subdivision was driven by slope and elevation differences of up to 500 m across escarpments separating the north and south, potentially reinforced by glaciation of the south during the Late Pleistocene (~42,000-16,000 years ago). Despite this landscape-scale subdivision between the north and south, weak geographic structuring of sampling localities within regions indicated gene flow across distances of at least 16 km at the local scale, suggesting high, aboveground mobility for relatively long distances. Our study highlights that despite the potential for local-scale gene flow in fossorial species, topographic barriers can result in pronounced genetic subdivision. These factors can reduce genetic variability, which should be considered when developing conservation strategies.


Assuntos
Ecossistema , Roedores , Animais , Roedores/genética , Etiópia , Fluxo Gênico , Repetições de Microssatélites , Variação Genética/genética , Genética Populacional
7.
Transl Psychiatry ; 14(1): 59, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272911

RESUMO

The neurobiological origins of social behaviors are incompletely understood. Here we utilized synthetic biology approaches to reprogram the function of ZFP189, a transcription factor whose expression and function in rodent prefrontal cortex was previously demonstrated to be protective against stress-induced social deficits. We created novel synthetic ZFP189 transcription factors including ZFP189VPR, which activates the transcription of target genes and therefore exerts opposite functional control from the endogenous, transcriptionally repressive ZFP189WT. Following viral delivery of these synthetic ZFP189 transcription factors to mouse prefrontal cortex, we observe that ZFP189-mediated transcriptional control promotes mature dendritic spine morphology on transduced pyramidal neurons. Interestingly, inversion of ZFP189-mediated transcription in this brain area, achieved by viral delivery of synthetic ZFP189VPR, precipitates social behavioral deficits in terms of social interaction, motivation, and the cognition necessary for the maintenance of social hierarchy, without other observable behavioral deficits. RNA sequencing of virally manipulated prefrontal cortex tissues reveals that ZFP189 transcription factors of opposing regulatory function (ZFP189WT versus ZFP189VPR) have opposite influence on the expression of genetic transposable elements as well as genes that participate in adaptive immune functions. Collectively, this work reveals that ZFP189 function in the prefrontal cortex coordinates structural and transcriptional neuroadaptations necessary for complex social behaviors while regulating transposable element-rich regions of DNA and the expression of immune-related genes. Given the evidence for a co-evolution of social behavior and the brain immune response, we posit that ZFP189 may have evolved to augment brain transposon-associated immune function as a way of enhancing an animal's capacity for functioning in social groups.


Assuntos
Elementos de DNA Transponíveis , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Córtex Pré-Frontal/metabolismo , Comportamento Social , Dedos de Zinco/genética , Roedores/genética , Roedores/metabolismo , Imunidade
8.
Nat Ecol Evol ; 8(2): 339-351, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195998

RESUMO

Zokors, an Asiatic group of subterranean rodents, originated in lowlands and colonized high-elevational zones following the uplift of the Qinghai-Tibet plateau about 3.6 million years ago. Zokors live at high elevation in subterranean burrows and experience hypobaric hypoxia, including both hypoxia (low oxygen concentration) and hypercapnia (elevated partial pressure of CO2). Here we report a genomic analysis of six zokor species (genus Eospalax) with different elevational ranges to identify structural variants (deletions and inversions) that may have contributed to high-elevation adaptation. Based on an assembly of a chromosome-level genome of the high-elevation species, Eospalax baileyi, we identified 18 large inversions that distinguished this species from congeners native to lower elevations. Small-scale structural variants in the introns of EGLN1, HIF1A, HSF1 and SFTPD of E. baileyi were associated with the upregulated expression of those genes. A rearrangement on chromosome 1 was associated with altered chromatin accessibility, leading to modified gene expression profiles of key genes involved in the physiological response to hypoxia. Multigene families that underwent copy-number expansions in E. baileyi were enriched for autophagy, HIF1 signalling and immune response. E. baileyi show a significantly larger lung mass than those of other Eospalax species. These findings highlight the key role of structural variants underlying hypoxia adaptation of high-elevation species in Eospalax.


Assuntos
Altitude , Roedores , Animais , Filogenia , Roedores/genética , Hipóxia/genética , Variação Estrutural do Genoma
9.
Sci Rep ; 14(1): 545, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177653

RESUMO

Rodents of the genus Cerradomys belong to tribe Oryzomyini, one of the most diverse and speciose groups in Sigmodontinae (Rodentia, Cricetidae). The speciation process in Cerradomys is associated with chromosomal rearrangements and biogeographic dynamics in South America during the Pleistocene era. As the morphological, molecular and karyotypic aspects of Myomorpha rodents do not evolve at the same rate, we strategically employed karyotypic characters for the construction of chromosomal phylogeny to investigate whether phylogenetic relationships using chromosomal data corroborate the radiation of Cerradomys taxa recovered by molecular phylogeny. Comparative chromosome painting using Hylaeamys megacephalus (HME) whole chromosome probes in C. langguthi (CLA), Cerradomys scotii (CSC), C. subflavus (CSU) and C. vivoi (CVI) shows that karyotypic variability is due to 16 fusion events, 2 fission events, 10 pericentric inversions and 1 centromeric repositioning, plus amplification of constitutive heterochromatin in the short arms of the X chromosomes of CSC and CLA. The chromosomal phylogeny obtained by Maximum Parsimony analysis retrieved Cerradomys as a monophyletic group with 97% support (bootstrap), with CSC as the sister to the other species, followed by a ramification into two clades (69% of branch support), the first comprising CLA and the other branch including CVI and CSU. We integrated the chromosome painting analysis of Eumuroida rodents investigated by HME and Mus musculus (MMU) probes and identified several syntenic blocks shared among representatives of Cricetidae and Muridae. The Cerradomys genus underwent an extensive karyotypic evolutionary process, with multiple rearrangements that shaped extant karyotypes. The chromosomal phylogeny corroborates the phylogenetic relationships proposed by molecular analysis and indicates that karyotypic diversity is associated with species radiation. Three syntenic blocks were identified as part of the ancestral Eumuroida karyotype (AEK): MMU 7/19 (AEK 1), MMU 14 (AEK 10) and MMU 12 (AEK 11). Besides, MMU 5/10 (HME 18/2/24) and MMU 8/13 (HME 22/5/11) should be considered as signatures for Cricetidae, while MMU 5/9/14, 5/7/19, 5 and 8/17 for Sigmodontinae.


Assuntos
Roedores , Sigmodontinae , Animais , Sigmodontinae/genética , Roedores/genética , Filogenia , Arvicolinae , Muridae , Inversão Cromossômica , Coloração Cromossômica
10.
Jpn J Infect Dis ; 77(1): 55-58, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37648489

RESUMO

To demonstrate the transmission cycle of Shimokoshi-type Orientia tsutsugamushi in Shimane Prefecture, field rodents were captured from areas where four human infections caused by the pathogen have been reported. The rodents were investigated for the transmission cycle of the pathogen based on the pathogen's genome, antibodies against the pathogen, and the vector of the pathogen (Leptotrombidium palpale). In addition, the vector was captured from the soil in the study area. A total of 44 rodents were captured. No O. tsutsugamushi DNA was detected in the blood or spleen samples by real-time polymerase chain reaction. However, a specific antibody against the pathogen was detected in 2 out of 44 (4.5%) rodents using the indirect immunoperoxidase method, indicating the presence of the pathogen in the study area. Although 29 L. palpale were identified, DNA detection was not performed because of the insufficient number of vectors, based on the DNA detection rate in previous studies. However, the identification of the vector, as well as the specific antibody in rodents, suggests the presence of the transmission cycle of Shimokoshi-type O. tsutsugamushi in Shimane Prefecture.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Trombiculidae , Animais , Humanos , Orientia tsutsugamushi/genética , Japão/epidemiologia , Tifo por Ácaros/epidemiologia , Tifo por Ácaros/diagnóstico , Trombiculidae/genética , Roedores/genética , DNA
11.
Mol Phylogenet Evol ; 191: 107992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092321

RESUMO

Species delimitation studies based on integrating different datasets such as genomic, morphometric, and cytogenetics data are rare in studies focused on Neotropical rodents. As a consequence, the evolutionary history of most of these genera remains poorly understood. Proechimys is a highly diverse and widely distributed genus of Neotropical spiny rats with unique traits like multiple sympatry, micro-habitat segregation, and fuzzy species limits. Here, we applied RAD-Seq to infer the phylogenetic relationships, estimate the species boundaries, and estimate the divergence times for Proechimys, one of the most common and least studied small mammals in the Amazon. We tested whether inferred lineages in the phylogenetic trees could be considered distinct species based on the genomic dataset and morphometric data. Analyses revealed the genus is not monophyletic, with Proechimys hoplomyoides sister to a group of Hoplomys gymnurus + all other Proechimys species, contesting the generic status of Hoplomys. There are five main clades in Proechimys stricto sensu (excluding H. gymnurus and P. hoplomyoides). Species delimitation analyses supported 25 species within the genus Proechimys. The five main clades in Proechimys stricto sensu also showed similar ages for their origins, and two rapid diversification events were identified in the Early Pliocene and in the Early Pleistocene. Most cases of sympatry in Proechimys occur among species from the different main clades, and although Proechimys is an inhabitant of the Amazon, three species occupied the Cerrado biome during the Pleistocene. We could associate available nominal taxon, cytogenetics information, and DNA sequences in Genbank to most of the 25 species we hypothesized from our delimitation analyses. Based on our analyses, we estimate that eight forms represent putative new species that need a taxonomic revision.


Assuntos
Evolução Biológica , Roedores , Ratos , Animais , Filogenia , Roedores/genética , Florestas , Ecossistema
12.
Mol Phylogenet Evol ; 193: 107997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38128795

RESUMO

Madagascar exhibits extraordinarily high level of species richness and endemism, while being severely threatened by habitat loss and fragmentation (HL&F). In front of these threats to biodiversity, conservation effort can be directed, for instance, in the documentation of species that are still unknown to science, or in investigating how species respond to HL&F. The tufted-tail rats genus (Eliurus spp.) is the most speciose genus of endemic rodents in Madagascar, with 13 described species, which occupy two major habitat types: dry or humid forests. The large species diversity and association to specific habitat types make the Eliurus genus a suitable model for investigating species adaptation to new environments, as well as response to HL&F (dry vs humid). In the present study, we investigated Eliurus spp. genomic diversity across northern Madagascar, a region covered by both dry and humid fragmented forests. From the mitochondrial DNA (mtDNA) and nuclear genomic (RAD-seq) data of 124 Eliurus individuals sampled in poorly studied forests of northern Madagascar, we identified an undescribed Eliurus taxon (Eliurus sp. nova). We tested the hypothesis of a new Eliurus species using several approaches: i) DNA barcoding; ii) phylogenetic inferences; iii) species delimitation tests based on the Multi-Species Coalescent (MSC) model, iv) genealogical divergence index (gdi); v) an ad-hoc test of isolation-by-distance within versus between sister-taxa, vi) comparisons of %GC content patterns and vii) morphological analyses. All analyses support the recognition of the undescribed lineage as a putative distinct species. In addition, we show that Eliurus myoxinus, a species known from the dry forests of western Madagascar, is, surprisingly, found mostly in humid forests in northern Madagascar. In conclusion, we discuss the implications of such findings in the context of Eliurus species evolution and diversification, and use the distribution of northern Eliurus species as a proxy for reconstructing past changes in forest cover and vegetation type in northern Madagascar.


Assuntos
Biodiversidade , Ecossistema , Ratos , Animais , Filogenia , Madagáscar , Florestas , Roedores/genética , DNA Mitocondrial/genética , Genômica
13.
Genes (Basel) ; 14(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38137011

RESUMO

BACKGROUND: Traumatic spinal cord injury (SCI) is a disabling condition that affects millions of people around the world. Currently, no clinical treatment can restore spinal cord function. Comparison of molecular responses in regenerating to non-regenerating vertebrates can shed light on neural restoration. The axolotl (Ambystoma mexicanum) is an amphibian that regenerates regions of the brain or spinal cord after damage. METHODS: In this study, we compared the transcriptomes after SCI at acute (1-2 days after SCI) and sub-acute (6-7 days post-SCI) periods through the analysis of RNA-seq public datasets from axolotl and non-regenerating rodents. RESULTS: Genes related to wound healing and immune responses were upregulated in axolotls, rats, and mice after SCI; however, the immune-related processes were more prevalent in rodents. In the acute phase of SCI in the axolotl, the molecular pathways and genes associated with early development were upregulated, while processes related to neuronal function were downregulated. Importantly, the downregulation of processes related to sensorial and motor functions was observed only in rodents. This analysis also revealed that genes related to pluripotency, cytoskeleton rearrangement, and transposable elements (e.g., Sox2, Krt5, and LOC100130764) were among the most upregulated in the axolotl. Finally, gene regulatory networks in axolotls revealed the early activation of genes related to neurogenesis, including Atf3/4 and Foxa2. CONCLUSIONS: Immune-related processes are upregulated shortly after SCI in axolotls and rodents; however, a strong immune response is more noticeable in rodents. Genes related to early development and neurogenesis are upregulated beginning in the acute stage of SCI in axolotls, while the loss of motor and sensory functions is detected only in rodents during the sub-acute period of SCI. The approach employed in this study might be useful for designing and establishing regenerative therapies after SCI in mammals, including humans.


Assuntos
Ambystoma mexicanum , Traumatismos da Medula Espinal , Humanos , Animais , Ratos , Camundongos , Ambystoma mexicanum/genética , RNA-Seq , Roedores/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Perfilação da Expressão Gênica , Modelos Animais
14.
Genome Biol Evol ; 15(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972291

RESUMO

Olfactory receptor (OR) genes represent the largest multigenic family in mammalian genomes and encode proteins that bind environmental odorant molecules. The OR repertoire is extremely variable among species and is subject to many gene duplications and losses, which have been linked to ecological adaptations in mammals. Although they have been studied on a broad taxonomic scale (i.e., placental), finer sampling has rarely been explored in order to better capture the mechanisms that drove the evolution of the OR repertoire. Among placental mammals, rodents are well-suited for this task, as they exhibit diverse life history traits, and genomic data are available for most major families and a diverse array of lifestyles. In this study, 53 rodent published genomes were mined for their OR subgenomes. We retrieved more than 85,000 functional and pseudogene OR sequences that were subsequently classified into phylogenetic clusters. Copy number variation among rodents is similar to that of other mammals. Using our OR counts along with comparative phylogenetic approaches, we demonstrated that ecological niches such as diet, period of activity, and a fossorial lifestyle strongly impacted the proportion of OR pseudogenes. Within the OR subgenome, phylogenetic inertia was the main factor explaining the relative variations of the 13 OR gene families. However, a striking exception was a convergent 10-fold expansion of the OR family 14 among the phylogenetically divergent subterranean mole-rat lineages belonging to Bathyergidae and Spalacidae families. This study illustrates how the diversity of the OR repertoire has evolved among rodents, both shaped by selective forces stemming from species life history traits and neutral evolution along the rodent phylogeny.


Assuntos
Receptores Odorantes , Roedores , Feminino , Gravidez , Animais , Filogenia , Roedores/genética , Variações do Número de Cópias de DNA , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Placenta/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Evolução Molecular
15.
Infect Genet Evol ; 116: 105525, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956745

RESUMO

The immunogenetics of wildlife populations influence the epidemiology and evolutionary dynamic of the host-pathogen system. Profiling immune gene diversity present in wildlife may be especially important for those species that, while not at risk of disease or extinction themselves, are host to diseases that are a threat to humans, other wildlife, or livestock. Hantaviruses (genus: Orthohantavirus) are globally distributed zoonotic RNA viruses with pathogenic strains carried by a diverse group of rodent hosts. The marsh rice rat (Oryzomys palustris) is the reservoir host of Orthohantavirus bayoui, a hantavirus that causes fatal cases of hantavirus cardiopulmonary syndrome in humans. We performed a genome wide association study (GWAS) using the rice rat "immunome" (i.e., all exons related to the immune response) to identify genetic variants associated with infection status in wild-caught rice rats naturally infected with their endemic strain of hantavirus. First, we created an annotated reference genome using 10× Chromium Linked Reads sequencing technology. This reference genome was used to create custom baits which were then used to target enrich prepared rice rat libraries (n = 128) and isolate their immunomes prior to sequencing. Top SNPs in the association test were present in four genes (Socs5, Eprs, Mrc1, and Il1f8) which have not been previously implicated in hantavirus infections. However, these genes correspond with other loci or pathways with established importance in hantavirus susceptibility or infection tolerance in reservoir hosts: the JAK/STAT, MHC, and NFκB. These results serve as informative markers for future exploration and highlight the importance of immune pathways that repeatedly emerge across hantavirus systems. Our work aids in creating cross-species comparisons for better understanding mechanisms of genetic susceptibility and host-pathogen coevolution in hantavirus systems.


Assuntos
Infecções por Hantavirus , Orthohantavírus , Animais , Humanos , Ratos , Estudo de Associação Genômica Ampla , Infecções por Hantavirus/genética , Infecções por Hantavirus/veterinária , Infecções por Hantavirus/epidemiologia , Orthohantavírus/genética , Sigmodontinae , Roedores/genética , Inflamação , Animais Selvagens/genética , Reservatórios de Doenças
16.
Sci Rep ; 13(1): 20258, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985797

RESUMO

In recent phylogenetic studies, bat Polychromophilus and ungulate Plasmodium, two relatively understudied haemosporidian parasites within the Apicomplexa phylum, have often been overlooked. Instead, the focus has been primarily on haemosporidian parasites in primates, rodents, and birds. Several phylogenetic analyses of bat Polychromophilus have relied on limited datasets and short informative DNA sequences. As a result of these inherent limitations, the substantiation of their evolutionary stance has encountered a diminished degree of robust validation. This study successfully obtained complete mitochondrial genome sequences from 11 Polychromophilus parasites originating from Hipposideros gentilis and Myotis siligoensis bats for the first time. Additionally, the authors have sequenced the apicoplast caseinolytic protease C genes from Polychromophilus murinus and a potentially new Polychromophilus species. These mitochondrial genomes range in length from 5994 to 6001 bp and consist of three protein-coding genes (PCGs), seven small subunit ribosomal RNA genes (SSU rRNA), 12 large subunit ribosomal RNA genes (LSU rRNA), and seven miscellaneous RNA genes. Phylogenetic analyses using Bayesian Inference and Maximum Likelihood methods indicated robust support for the grouping of ungulate Plasmodium and bat Polychromophilus in a single clade separate from other Plasmodium spp., confirming previous reports, albeit with stronger evidence in this study. The divergence between Polychromophilus in bats and Plasmodium in ungulates occurred approximately 29.61 to 55.77 million years ago (Mya), with a node age estimated at 40.63 Mya. These findings highlight that the genus Plasmodium, which includes species found in ungulates, birds, reptiles, and other mammals, does not form a monophyletic group. By incorporating Polychromophilus in bats and Plasmodium in ungulates, this study contributes significantly to understanding the phylogenetic relationships within the Haemosporida order. It provides valuable insights into the evolutionary history and interconnections among these diverse parasites, thereby expanding knowledge in this field.


Assuntos
Quirópteros , Genoma Mitocondrial , Haemosporida , Parasitos , Plasmodium , Animais , Quirópteros/genética , Filogenia , Teorema de Bayes , Plasmodium/genética , Mamíferos/genética , Haemosporida/genética , Parasitos/genética , Roedores/genética , Primatas/genética
17.
Nat Commun ; 14(1): 7234, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945654

RESUMO

Although beta-endorphinergic neurons in the hypothalamic arcuate nucleus (ARC) synthesize beta-endorphin (ß-EP) to alleviate nociceptive behaviors, the underlying regulatory mechanisms remain unknown. Here, we elucidated an epigenetic pathway driven by microRNA regulation of ß-EP synthesis in ARC neurons to control neuropathic pain. In pain-injured rats miR-203a-3p was the most highly upregulated miRNA in the ARC. A similar increase was identified in the cerebrospinal fluid of trigeminal neuralgia patients. Mechanistically, we found histone deacetylase 9 was downregulated following nerve injury, which decreased deacetylation of histone H3 lysine-18, facilitating the binding of NR4A2 transcription factor to the miR-203a-3p gene promoter, thereby upregulating miR-203a-3p expression. Further, increased miR-203a-3p was found to maintain neuropathic pain by targeting proprotein convertase 1, an endopeptidase necessary for the cleavage of proopiomelanocortin, the precursor of ß-EP. The identified mechanism may provide an avenue for the development of new therapeutic targets for neuropathic pain treatment.


Assuntos
MicroRNAs , Neuralgia , Animais , Humanos , Ratos , Núcleo Arqueado do Hipotálamo/metabolismo , beta-Endorfina/genética , beta-Endorfina/metabolismo , Epigênese Genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Neurônios/metabolismo , Roedores/genética
18.
Mol Aspects Med ; 94: 101228, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38016252

RESUMO

Genetic rodent models are widely used in glaucoma related research. With vast amount of information revealed by human studies about genetic correlations with glaucoma, use of these models is relevant and required. In this review, we discuss the glaucoma endophenotypes and importance of their representation in an experimental animal model. Mice and rats are the most popular animal species used as genetic models due to ease of genetic manipulations in these animal species as well as the availability of their genomic information. With technological advances, induction of glaucoma related genetic mutations commonly observed in human is possible to achieve in rodents in a desirable manner. This approach helps to study the pathobiology of the disease process with the background of genetic abnormalities, reveals potential therapeutic targets and gives an opportunity to test newer therapeutic options. Various genetic manipulation leading to appearance of human relevant endophenotypes in rodents indicate their relevance in glaucoma pathology and the utility of these rodent models for exploring various aspects of the disease related to targeted mutation. The molecular pathways involved in the pathophysiology of glaucoma leading to elevated intraocular pressure and the disease hallmark, apoptosis of retinal ganglion cells and optic nerve degeneration, have been extensively explored in genetic rodent models. In this review, we discuss the consequences of various genetic manipulations based on the primary site of pathology in the anterior or the posterior segment. We discuss how these genetic manipulations produce features in rodents that can be considered a close representation of disease phenotype in human. We also highlight several molecular mechanisms revealed by using genetic rodent models of glaucoma including those involved in increased aqueous outflow resistance, loss of retinal ganglion cells and optic neuropathy. Lastly, we discuss the limitations of the use of genetic rodent models in glaucoma related research.


Assuntos
Glaucoma , Roedores , Ratos , Camundongos , Humanos , Animais , Roedores/genética , Pressão Intraocular , Modelos Animais de Doenças , Glaucoma/genética , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Fenótipo
19.
Nat Commun ; 14(1): 7840, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030627

RESUMO

As climate change continues, species pushed outside their physiological tolerance limits must adapt or face extinction. When change is rapid, adaptation will largely harness ancestral variation, making the availability and characteristics of that variation of critical importance. Here, we used whole-genome sequencing and genetic-environment association analyses to identify adaptive variation and its significance in the context of future climates in a small Palearctic mammal, the bank vole (Clethrionomys glareolus). We found that peripheral populations of bank vole in Britain are already at the extreme bounds of potential genetic adaptation and may require an influx of adaptive variation in order to respond. Analyses of adaptive loci suggest regional differences in climate variables select for variants that influence patterns of population adaptive resilience, including genes associated with antioxidant defense, and support a pattern of thermal/hypoxic cross-adaptation. Our findings indicate that understanding potential shifts in genomic composition in response to climate change may be key to predicting species' fate under future climates.


Assuntos
Mamíferos , Roedores , Animais , Roedores/genética , Mamíferos/genética , Genoma , Arvicolinae/genética , Mudança Climática , Adaptação Fisiológica/genética
20.
PLoS One ; 18(10): e0291797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792706

RESUMO

Morphological, molecular and chromosomal studies in the genera Lonchothrix and Mesomys have contributed to a better understanding of taxonomic design, phylogenetic relationships and karyotypic patterns. Recent molecular investigations have shown a yet undescribed diversity, suggesting that these taxa are even more diverse than previously assumed. Furthermore, some authors have questioned the limits of geographic distribution in the Amazon region for the species M. hispidus and M. stimulax. In this sense, the current study sought to understand the karyotypic evolution and geographic limits of the genus Mesomys, based on classical (G- and C-banding) and molecular cytogenetic analysis (FISH using rDNA 18S and telomeric probes) and through the sequencing of mitochondrial genes Cytochrome b (Cytb) and Cytochrome Oxidase-Subunit I (CO using phylogeny, species delimitation and time of divergence, from samples of different locations in the Brazilian Amazon. The species M. stimulax and Mesomys sp. presented 2n = 60/FN = 110, while M. hispidus presented 2n = 60/FN = 112, hitherto unpublished. Molecular dating showed that Mesomys diversification occurred during the Plio-Pleistocene period, with M. occultus diverging at around 5.1 Ma, followed by Mesomys sp. (4.1 Ma) and, more recently, the separation between M. hispidus and M. stimulax (3.5 Ma). The ABGD and ASAP species delimiters support the formation of 7 and 8 potential species of the genus Mesomys, respectively. Furthermore, in both analyzes Mesomys sp. was recovered as a valid species. Our multidisciplinary approach involving karyotypic, molecular and biogeographic analysis is the first performed in Mesomys, with the description of a new karyotype for M. hispidus, a new independent lineage for the genus and new distribution data for M. hispidus and M. stimulax.


Assuntos
Variação Genética , Roedores , Animais , Roedores/genética , Brasil , Filogenia , Cariótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...